# Spectroscopy of $\mathrm{LiYF}_{4}: \mathrm{Eu}^{3+}$ single crystals 

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1990 J. Phys.: Condens. Matter 25703
(http://iopscience.iop.org/0953-8984/2/26/006)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.96
The article was downloaded on 10/05/2010 at 22:19

Please note that terms and conditions apply.

# Spectroscopy of $\mathrm{LiYF}_{4}$ : Eu $^{3+}$ single crystals 

Bipin Bihari $\dagger, ~ K ~ K ~ S h a r m a ~ † ~ a n d ~ L . ~ E ~ E r i c k s o n ~ \ddagger ~$<br>$\dagger$ Department of Physics and Centre for Laser Technology, Indian Institute of Technology, Kanpur 208 016, India<br>$\ddagger$ National Research Council of Canada, Ottawa K1A 0R8, Canada

Received 15 January 1990


#### Abstract

Polarised absorption and laser-induced fluorescence spectra of $\mathrm{LiYF}_{4}: \mathrm{Eu}^{3+}$ were recorded at liquid-nitrogen temperature in the visible spectral range. Transitions with pure electric dipole, pure magnetic dipole and mixed dipolar character have been observed. Spectroscopic assignments to the energy levels are made on the basis of the observed energies, polarisation characteristics of the spectral lines and electric and magnetic dipole selection rules relevant to the $S_{4}$ point group. 37 Stark components belonging to ten multiplets of $\mathrm{Eu}^{3+}$ have been established. Free-ion and crystal-field parameters have been obtained. Simulation of the crystal-field energy levels has been attempted with and without $J-J$ mixing effects using intermediate-coupling wavefunctions.


## 1. Introduction

Trivalent europium is unique among rare-earth ions in that it has a ground state with total angular momentum $J=0$. There are strong selection rules which forbid transitions from this ground state to many of the excited states. In particular, the $J=0 \rightarrow 0$ transition is forbidden in electric dipole (ED) and magnetic dipole (MD) approximations and, further, the normally allowed 'forced electric dipole' transitions in rare-earth ions in a crystalline environment are also not permitted from $J=0$ states to odd $-J$ states. As a consequence of these selection rules, the ${ }^{7} \mathrm{~F}_{0}-{ }^{5} \mathrm{D}_{0}$ transition is seldom observed in absorption or emission. Similarly, the ${ }^{7} \mathrm{~F}_{0}-{ }^{5} \mathrm{D}_{3}$ and the weakly observed ${ }^{7} \mathrm{~F}_{0}-{ }^{5} \mathrm{D}_{1}$ and ${ }^{5} \mathrm{D}_{0}-{ }^{7} \mathrm{~F}_{3},{ }^{7} \mathrm{~F}_{5}$ transitions are in general agreement with these selection rules. The crystalfield effects leading to mixing of pure $J$ states allow these transitions to be weakly observed. $\mathrm{LiYF}_{4}: \mathrm{Eu}^{3+}$ is one of the few examples where the existence of magnetic dipole transitions in the optical spectrum has been unambiguously established. The ${ }^{7} \mathrm{~F}_{0}-$ ${ }^{5} \mathrm{D}_{1}$ transition of $\mathrm{Eu}^{3+}$ in the $\mathrm{S}_{4}$ site symmetry of $\mathrm{LiYF}_{4}$ is not permitted in the ED approximation but is permitted in the MD approximation. The experimental observations are in complete agreement with this fact [1]. This ion-host combination with a nondegenerate ground state is particularly useful for optically detected nuclear magnetic resonance studies [2]. At the same time, the system with six electrons in the 4 f shell is sufficiently complex for the interpretation of its optical spectrum. In the only other published work on this system, Görller-Walrand et al [3] have analysed fluorescence from ${ }^{5} \mathrm{D}_{0.1}$ multiplets to some of the ${ }^{7} \mathrm{~F}_{J}$ multiplets. Our measurements involving absorption, excitation spectrum and laser-induced fluorescence cover some additional multiplets. Further, our detailed polarisation measurements have allowed us to use the exact site
symmetry $\mathrm{S}_{4}$. We have identified several vibronic transitions which were helpful in making symmetry assignments [1]. The crystal-field parameters in [3] were obtained by considering $J-J$ mixing within the ${ }^{7} \mathrm{~F}_{J}$ multiplets. We have attempted to describe the crystal-field effects within ${ }^{7} \mathrm{~F}$ and ${ }^{5} \mathrm{D}$ multiplets with and without $J-J$ mixing effects using intermediate-coupling wavefunctions. Because of computational constraints, it was necessary to adopt a truncation procedure while considering the $J-J$ mixing effects.

## 2. Crystal structure and experimental details

The uniaxial $\mathrm{LiYF}_{4}$ single crystal is isomorphous to scheelite-type crystals such as $\mathrm{CaWO}_{4}$ having a tetragonal crystal structure [4] (space group $\mathrm{C}_{4 \mathrm{~h}}^{6}$ ) with $a=b=5.26 \AA$, $c=10.94 \AA$ and $\alpha=\beta=\gamma=90^{\circ}$. Eight $\mathrm{F}^{-}$ions surrounding the $\mathrm{Y}^{3+}$ ion form a poly-


Figure 1. ${ }^{5} \mathrm{D}_{2}{ }^{-7} \mathrm{~F}_{3}$ fluorescence of $\mathrm{LiYF}_{4}: \mathrm{Eu}^{3+}$ at liquid-nitrogen temperature.
hedron which is nearly a dodecahedron. In the absence of $\mathrm{F}^{-}$ions, site symmetry at the position of the $\mathrm{Y}^{3+}$ ion would be $\mathrm{D}_{2 \mathrm{~d}}$. The presence of $\mathrm{F}^{-}$lowers the symmetry to $\mathrm{S}_{4}$. The $\mathrm{LiYF}_{4}$ presents a tight structure and, on doping, rare-earth ions are unlikely to be found in the interstitial positions. The oriented and cut sample used in the present study measured $3.8 \mathrm{~mm} \times 2.1 \mathrm{~mm} \times 3.1 \mathrm{~mm}$ with the crystallographic $\bar{c}$ axis parallel to the 3.1 mm edge. The $\mathrm{Eu}^{3+}$ concentration in the sample was about $1 \%$.

Spectroscopic measurements were made using a Carl-Zeiss double-grating monochromator model GDM- 1000 which has a resolution of better than $0.5 \mathrm{~cm}^{-1}$ in the range of our investigation. For absorption measurements, a water-cooled 1000 W tungstenhalogen lamp and, for recording the fluorescence and excitation spectra, a 15 W Coherent $\mathrm{Ar}^{+}$laser and a coherent ring dye laser were used. The sample was cooled to liquidnitrogen temperature. All spectra were recorded in $\pi, \sigma$ and axial modes. Figure 1 shows a typical spectrum corresponding to ${ }^{5} \mathrm{D}_{2}-{ }^{7} \mathrm{~F}_{3}$ fluorescence. In order to compensate for the polarisation characteristics of the monochromator, the spectral profile of the tungsten-halogen lamp was recorded by inserting the sheet polariser between the lamp and the entrance slit of the monochromator in $\sigma$ and $\pi$ orientations and the necessary correction factors obtained in the region of our interest.

The $\mathrm{LiYF}_{4}: \mathrm{Eu}^{3+}$ exhibits fluorescence when excited with most of the Ar-ion laser lines, although excitation in all cases is non-resonant. The ${ }^{5} \mathrm{D}_{2}$ excitation produces fluorescence from ${ }^{5} \mathrm{D}_{2},{ }^{5} \mathrm{D}_{1}$ and ${ }^{5} \mathrm{D}_{0}$ multiplets as well, while ${ }^{5} \mathrm{D}_{1}$ excitation produces fluorescence from ${ }^{5} D_{1}$ and ${ }^{5} D_{0}$ multiplets. Since the ${ }^{7} F_{0}-{ }^{5} D_{0}$ transition is restricted by several selection rules, its resonance excitation using the dye laser was also not very effective. However, the excitation spectrum obtained by monitoring ${ }^{5} \mathrm{D}_{0}\left(\Gamma_{1}\right)-{ }^{5} \mathrm{~F}_{1}\left(\Gamma_{1}\right)$ fluorescence transition at $16842 \mathrm{~cm}^{-1}$ and scanning the dye laser from 16900 $17800 \mathrm{~cm}^{-1}$ shows that the ${ }^{5} \mathrm{D}_{0}$ level can be excited quite efficiently with the dye laser lasing at $16938 \mathrm{~cm}^{-1}$ (which corresponds to the wavenumber interval for the ${ }^{7} \mathrm{~F}_{1}\left(\Gamma_{3}\right)$ ${ }^{5} \mathrm{D}_{0}\left(\Gamma_{1}\right)$ transition) and at $17630 \mathrm{~cm}^{-1}$ (phonon-assisted excitation).

## 3. Spectroscopic assignments

The Stark levels of $\mathrm{Eu}^{3+}$ in $\mathrm{LiYF}_{4}$ can be characterised by four irreducible representations $\Gamma_{1}, \Gamma_{2}, \Gamma_{3}$ and $\Gamma_{4}$ (as $\Gamma_{3}$ and $\Gamma_{4}$ are degenerate, they are denoted by $\Gamma_{3}$ ) of the symmetry group $\mathrm{S}_{4}$ [5]. Spectroscopic assignments to energy levels were made on the basis of the observed energies, polarisation characteristics of transitions between them and the selection rules for ED and MD transitions (table 1). Lines with comparable intensities in $\sigma(\pi)$ and axial spectra are associated with ED (MD) transitions. Mixed (ED

Table 1. Forced ED and MD selection rules for the $\mathrm{S}_{4}$ site symmetry in $\mathrm{LiYF}_{4}: \mathrm{Eu}^{3+}$.

|  | ED |  |  |  | MD |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
|  | $\Gamma_{1}$ | $\Gamma_{2}$ | $\Gamma_{3}$ | $\Gamma_{4}$ |  | $\Gamma_{1}$ | $\Gamma_{2}$ | $\Gamma_{3}$ | $\Gamma_{4}$ |
| $\Gamma_{1}$ | - | $\pi$ | $\sigma$ | $\sigma$ | $\sigma$ | - | $\pi$ | $\pi$ |  |
| $\Gamma_{2}$ | $\pi$ | - | $\sigma$ | $\sigma$ |  | $\sigma$ | $\pi$ | $\pi$ |  |
| $\Gamma_{3}$ | $\sigma$ | $\sigma$ | $\pi$ | - | $\pi$ | $\pi$ | - | $\sigma$ |  |
| $\Gamma_{4}$ | $\sigma$ | $\sigma$ | - | $\pi$ | $\pi$ | $\pi$ | $\sigma$ | - |  |

and MD) transitions appear in both $\sigma$ and $\pi$ polarisations. The criteria used to decide dominant nature of mixed transitions are

$$
\begin{aligned}
& I_{\pi}<I_{\sigma}<I_{\mathrm{ax}} \rightarrow \sigma-\mathrm{ED} \text { (dominant), } \pi-\mathrm{MD} \\
& I_{\sigma}<I_{\pi}<I_{\mathrm{ax}} \rightarrow \pi-\mathrm{MD} \text { (dominant) }, \sigma-\mathrm{ED} \\
& I_{\sigma}>I_{\pi}>I_{\mathrm{ax}} \rightarrow \sigma-\mathrm{MD} \text { (dominant), } \pi-\mathrm{ED} \\
& I_{\pi}>I_{\sigma}>I_{\mathrm{ax}} \rightarrow \pi-\mathrm{ED} \text { (dominant), } \sigma-\mathrm{MD} .
\end{aligned}
$$

From our data, we have been able to establish the structure of ${ }^{5} \mathrm{D}_{J}(J=0-2)$ and ${ }^{7} \mathrm{~F}_{J}$ ( $J=0-4$ ) multiplets completely, while the structure of ${ }^{7} \mathrm{~F}_{5}$ and ${ }^{5} \mathrm{~L}_{6}$ multiplets could be established only partially.

## 3.1. ${ }^{5} \mathrm{D}$ multiplets

The ${ }^{7} \mathrm{~F}_{0}\left(\Gamma_{1}\right)-{ }^{5} \mathrm{D}_{0}\left(\Gamma_{1}\right)$ energy level separation has been reported to be $17263 \mathrm{~cm}^{-1}$ at liquid-helium temperature and $17270 \mathrm{~cm}^{-1}$ at liquid-nitrogen temperature $[2,3]$. We have not observed this transition at 77 K but our fluorescence data put the ${ }^{5} \mathrm{D}_{0}\left(\Gamma_{1}\right)$ level at $17271 \mathrm{~cm}^{-1}$. The two magnetic dipole transitions observed at 19021 and $19043 \mathrm{~cm}^{-1}$ in the absorption spectrum are assigned to the ${ }^{7} \mathrm{~F}_{0}\left(\Gamma_{1}\right)-{ }^{5} \mathrm{D}_{1}\left(\Gamma_{3}\right)$ and ${ }^{7} \mathrm{~F}_{0}\left(\Gamma_{1}\right)-{ }^{5} \mathrm{D}_{1}\left(\Gamma_{1}\right)$ transitions, respectively. The observed fluorescence from the ${ }^{5} \mathrm{D}_{1}$ multiplet to various ${ }^{7} \mathrm{~F}_{J}$ multiplets is consistent with this assignment.

The ${ }^{5} \mathrm{D}_{2}$ multiplet splits into four components: $\Gamma_{1}$, two $\Gamma_{2}$ and $\Gamma_{3}[5]$. Three ED transitions at 21450,21520 and $21543 \mathrm{~cm}^{-1}$ observed in the absorption spectrum establish the positions of $\Gamma_{2}(1), \Gamma_{3}$ and $\Gamma_{2}(2)$ components of this multiplet. The ${ }^{5} \mathrm{D}_{2}-{ }^{7} \mathrm{~F}_{0}$ fluorescence in the spectral range $21400-21570 \mathrm{~cm}^{-1}$ confirms this assignment. The position of the remaining ${ }^{5} \mathrm{D}_{2}\left(\Gamma_{1}\right)$ level was inferred from the ${ }^{5} \mathrm{D}_{2}-{ }^{7} \mathrm{~F}_{1}$ fluorescence. The fairly strong $\sigma$-ED and somewhat weaker $\pi$-MD line observed at $21145 \mathrm{~cm}^{-1}$ for this fluorescence group is assigned to the ${ }^{5} \mathrm{D}_{2}\left(\Gamma_{1}\right)-{ }^{7} \mathrm{~F}_{1}\left(\Gamma_{3}\right)$ transition, suggesting the ${ }^{5} \mathrm{D}_{2}\left(\Gamma_{1}\right)$ Stark level at $21479 \mathrm{~cm}^{-1}$. This multiplet was established for the first time. However, we could not observe any transition involving ${ }^{5} \mathrm{D}_{3}$ multiplet.

## 3.2. ${ }^{5} L_{6}$ multiplet

Four fairly strong and well separated lines at $25416,25241,25027$ and $24953 \mathrm{~cm}^{-1}$ and a broad shoulder at $25258 \mathrm{~cm}^{-1}$ associated with the $25241 \mathrm{~cm}^{-1}$ line are present in the spectral region $24900-25500 \mathrm{~cm}^{-1}$ of the absorption spectrum. A literature survey and our free-ion calculations $[1,6]$ indicate that the ${ }^{5} \mathrm{D}_{3},{ }^{5} \mathrm{~L}_{6}$ and ${ }^{5} \mathrm{G}_{2}$ multiplets lie in the ranges $24300-24500 \mathrm{~cm}^{-1}, 24900-25400 \mathrm{~cm}^{-1}$ and $25900-26100 \mathrm{~cm}^{-1}$, respectively. The above-observed spectral lines are thus associated with ${ }^{7} \mathrm{~F}_{0}{ }^{-5} \mathrm{~L}_{6}$ transitions. This multiplet should have ten Stark components: three $\Gamma_{1}$, four $\Gamma_{2}$ and three $\Gamma_{3}$. It is reasonable to expect $\Gamma_{1}-\Gamma_{1}$ transitions not to appear for this group as MD transitions are forbidden for $\Delta J> \pm 1$. We assign the $\sigma$-ED lines at 24953 and $25241 \mathrm{~cm}^{-1}$ to the $\Gamma_{1}-\Gamma_{3}$ transitions and the $\pi$-ED line at $25027 \mathrm{~cm}^{-1}$ to the $\Gamma_{1}-\Gamma_{2}$ transition, thus establishing the positions of the $\Gamma_{3}(1), \Gamma_{3}(2)$ and $\Gamma_{2}(1)$ components of ${ }^{5} \mathrm{~L}_{6}$. The broad shoulder is $\sigma$-ED type, but our theoretical calculations do not support a $\Gamma_{3}$ level at this energy. This line is left unassigned. The line at $25416 \mathrm{~cm}^{-1}$ is strong and very broad ( $\mathrm{FWHM}, 34 \mathrm{~cm}^{-1}$ ). Its peak positions in $\pi$ - and $\sigma$-polarised spectra differ by $3 \mathrm{~cm}^{-1}$ and the peak in the axial
spectra matches that of the $\sigma$-polarisation. We therefore believe this line to consist of two lines: the $\pi$-ED peak at $25418 \mathrm{~cm}^{-1}$ is assigned to the $\Gamma_{1}-\Gamma_{2}(2)$ and the $\sigma$-ED peak at $25415 \mathrm{~cm}^{-1}$ to the $\Gamma_{1}-\Gamma_{3}(3)$ transitions. Thus, out of ten expected Stark levels of ${ }^{5} \mathrm{~L}_{6}$, five are identified. These assignments are in qualitative agreement with the calculated structure of the ${ }^{5} \mathrm{~L}_{6}$ multiplet. However, the complete identification of this multiplet was not possible.

## 3.3. ${ }^{7}$ F multiplets

The ${ }^{7} F_{J}$ multiplets with $J=0-6$ lie in the spectral range $0-5500 \mathrm{~cm}^{-1}$. Their structure can be derived from a systematic analysis of the fluorescence originating from the ${ }^{5} \mathrm{D}_{J}$ multiplets. Fluorescence measurements were made by irradiating the sample with 457.9 and 514.5 nm lines of the $\mathrm{Ar}^{+}$laser or with the dye laser tuned to excite the ${ }^{5} \mathrm{D}_{0}$ level. The extensive fluorescence observed from the ${ }^{5} \mathrm{D}_{0},{ }^{5} \mathrm{D}_{1}$ and ${ }^{5} \mathrm{D}_{2}$ multiplets to the Stark levels of the ${ }^{7} F_{J}$ multiplets was helpful in cross checking the symmetry assignments of the ${ }^{5} \mathrm{D}_{J}$ and ${ }^{7} \mathrm{~F}_{J}$ multiplets. Our assignments for these multiplets are in general agreement (within $\pm 3 \mathrm{~cm}^{-1}$ ) with those of Görller et al [3]. However, there are differences in the details of assignment arising most probably from the non-availability of complete polarisation information in [3]. For example, the $17868 \mathrm{~cm}^{-1}$ line has been assigned [3] to the $\sigma$-MD, ${ }^{5} \mathrm{D}_{1}\left(\Gamma_{1}\right)-{ }^{7} \mathrm{~F}_{2}\left(\Gamma_{1}\right)$ transition, while the mixed ( $\pi$-MD dominant plus $\sigma$-ED) character observed by us suggests that this line corresponds to the ${ }^{5} \mathrm{D}_{1}\left(\Gamma_{3}\right)-{ }^{7} \mathrm{~F}_{2}\left(\Gamma_{2}(2)\right)$ transition. Similarly, the ${ }^{5} \mathrm{D}_{1^{-}}{ }^{7} \mathrm{~F}_{5}$ fluorescence lines at $15245 \mathrm{~cm}^{-1}, 15236 \mathrm{~cm}^{-1}$ and $15223 \mathrm{~cm}^{-1}$ were assigned to the $\Gamma_{1}-\Gamma_{2}, \Gamma_{1}-\Gamma_{3}$ and $\Gamma_{3}-\Gamma_{2}$ transitions in [3], giving the positions of the $\Gamma_{2}(1)$ and $\Gamma_{3}(1)$ levels of the ${ }^{7} F_{5}$ multiplet at $3795 \mathrm{~cm}^{-1}$ and $3807 \mathrm{~cm}^{-1}$, respectively, whereas we find the $\Gamma_{1}-\Gamma_{3}(1), \Gamma_{3}-\Gamma_{2}(1)$ and $\Gamma_{3}-\Gamma_{3}(1)$ assignments more appropriate for these lines, thus establishing the $\Gamma_{2}(1)$ and $\Gamma_{3}(1)$ levels of ${ }^{7} F_{5}$ at $3786 \mathrm{~cm}^{-1}$ and $3799 \mathrm{~cm}^{-1}$, respectively. The Stark levels ${ }^{7} \mathrm{~F}_{4}\left(\Gamma_{1}(3)\right)\left(3081 \mathrm{~cm}^{-1}\right),{ }^{7} \mathrm{~F}_{5}\left(\Gamma_{1}(1)\right)$ ( $3844 \mathrm{~cm}^{-1}$ ) and ${ }^{7} \mathrm{~F}_{5}\left(\Gamma_{1}(2)\right)\left(4008 \mathrm{~cm}^{-1}\right.$ ) have been identified for the first time. Two sharp and rather strong lines in the ${ }^{5} \mathrm{D}_{0}{ }^{-7} \mathrm{~F}_{1}$ fluorescence with dominantly mD character at $16938 \mathrm{~cm}^{-1}$ and $16842 \mathrm{~cm}^{-1}$ establish the $\Gamma_{3}$ and $\Gamma_{1}$ components of the ${ }^{7} F_{1}$ multiplet at $333 \mathrm{~cm}^{-1}$ and $429 \mathrm{~cm}^{-1}$, respectively. The components of the ${ }^{7} F_{2}$ multiplet are found as $\Gamma_{2}(1)\left(889 \mathrm{~cm}^{-1}\right), \Gamma_{3}\left(976 \mathrm{~cm}^{-1}\right), \Gamma_{2}(2)\left(1152 \mathrm{~cm}^{-1}\right)$ and $\Gamma_{1}\left(1175 \mathrm{~cm}^{-1}\right)$. All ${ }^{7} \mathrm{~F}_{3}$ components are identified as $\Gamma_{2}(1)\left(1859 \mathrm{~cm}^{-1}\right), \Gamma_{3}(1)\left(1873 \mathrm{~cm}^{-1}\right), \Gamma_{1}\left(1902 \mathrm{~cm}^{-1}\right), \Gamma_{3}(2)$ ( $1954 \mathrm{~cm}^{-1}$ ) and $\Gamma_{2}(2)\left(2038 \mathrm{~cm}^{-1}\right)$. The four strong lines observed in the ${ }^{5} \mathrm{D}_{0}{ }^{-7} \mathrm{~F}_{4}$ fluorescence ( $14200-14700 \mathrm{~cm}^{-1}$ ) fix the $\Gamma_{3}(1)\left(2813 \mathrm{~cm}^{-1}\right), \Gamma_{2}(1)\left(2905 \mathrm{~cm}^{-1}\right), \Gamma_{2}(2)$ ( $2979 \mathrm{~cm}^{-1}$ ) and $\Gamma_{3}(2)\left(3012 \mathrm{~cm}^{-1}\right)$ components of the ${ }^{7} \mathrm{~F}_{4}$ multiplet. The weak $\sigma$-mD transitions observed at $14664 \mathrm{~cm}^{-1}$ and $14400 \mathrm{~cm}^{-1}$ place the two $\Gamma_{1}$ components at $2608 \mathrm{~cm}^{-1}$ and $2871 \mathrm{~cm}^{-1}$, respectively. The $\Gamma_{1}(3)$ component of this multiplet is placed at $3081 \mathrm{~cm}^{-1}$ on the basis of the observed ${ }^{5} \mathrm{D}_{1}-^{7} \mathrm{~F}_{4}$ fluorescence line at $15940 \mathrm{~cm}^{-1}$ and ${ }^{5} \mathrm{D}_{2}-{ }^{7} \mathrm{~F}_{4}$ fluorescence lines at 18373 and $18436 \mathrm{~cm}^{-1}$. The ${ }^{5} \mathrm{D}_{0}-{ }^{7} \mathrm{~F}_{5}$ fluorescence excited by the dye laser lasing at $16938 \mathrm{~cm}^{-1}$ establishes the positions of the $\Gamma_{2}(1), \Gamma_{3}(1), \Gamma_{3}(2)$ and $\Gamma_{3}(3)$ components of the ${ }^{7} F_{5}$ multiplet at $3786 \mathrm{~cm}^{-1}, 3799 \mathrm{~cm}^{-1}, 4000 \mathrm{~cm}^{-1}$ and $4052 \mathrm{~cm}^{-1}$, respectively. The ${ }^{5} \mathrm{D}_{1}-{ }^{7} \mathrm{~F}_{5}$ and ${ }^{5} \mathrm{D}_{2}{ }^{-7} \mathrm{~F}_{5}$ fluorescence is rather weak and complex. It has, however, been possible to determine from these fluorescence groups, the positions of $\Gamma_{1}(1)$ and $\Gamma_{1}(2)$ components of the ${ }^{7} F_{5}$ multiplet at $3844 \mathrm{~cm}^{-1}$ and $4008 \mathrm{~cm}^{-1}$, respectively. The remaining one component each of $\Gamma_{1}$ and $\Gamma_{2}$ representations of this multiplet could not be established.

The results of these assignments are summarised in table 2 along with the calculated results. This table gives the experimental and the calculated positions and symmetry

Table 2. Observed and calculated positions of the Stark levels of $\mathrm{Eu}^{3+}:$ LiYF $_{4}$.

| Multiplet | $\mathrm{CG}\left(\mathrm{cm}^{-1}\right)$ |  |  | Symmetry | Stark level ( $\mathrm{cm}^{-1}$ ) |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Observed | Calculated ${ }^{\text {a }}$ | Calculated ${ }^{\text {b }}$ |  | Observed | Calculated ${ }^{\text {c }}$ | Calculated ${ }^{\text {d }}$ |
| ${ }^{7} \mathrm{~F}_{0}$ | 0 | 0 | 0 | $\Gamma_{1}$ | 0 | 0 | 0 |
| ${ }^{7} \mathrm{~F}_{1}$ | 365 | 369 | 379 | $\begin{aligned} & \Gamma_{3} \\ & \Gamma_{1} \end{aligned}$ | $\begin{array}{r} -32 \\ 64 \end{array}$ | $\begin{array}{r} -36 \\ 73 \end{array}$ | $\begin{array}{r} -32 \\ 63 \end{array}$ |
| ${ }^{7} \mathrm{~F}_{2}$ | 1034 | 1017 | 1043 | $\begin{aligned} & \Gamma_{2}(1) \\ & \Gamma_{3} \\ & \Gamma_{2}(2) \\ & \Gamma_{1} \end{aligned}$ | $\begin{array}{r} -145 \\ -58 \\ 118 \\ 141 \end{array}$ | $\begin{array}{r} -157 \\ -33 \\ 106 \\ 115 \end{array}$ | $\begin{array}{r} -146 \\ -57 \\ 116 \\ 144 \end{array}$ |
| ${ }^{7} \mathrm{~F}_{3}$ | 1922 | 1856 | 1899 | $\begin{aligned} & \Gamma_{2}(1) \\ & \Gamma_{3}(1) \\ & \Gamma_{1} \\ & \Gamma_{3}(2) \\ & \Gamma_{2}(2) \end{aligned}$ | $\begin{array}{r} -63 \\ -49 \\ -20 \\ 32 \\ 116 \end{array}$ | $\begin{array}{r} -50 \\ -35 \\ -10 \\ 14 \\ 105 \end{array}$ | $\begin{array}{r} -61 \\ -48 \\ -21 \\ 31 \\ 117 \end{array}$ |
| ${ }^{7} \mathrm{~F}_{4}$ | 2899 | 2816 | 2876 | $\begin{aligned} & \Gamma_{1}(1) \\ & \Gamma_{3}(1) \\ & \Gamma_{1}(2) \\ & \Gamma_{2}(1) \\ & \Gamma_{2}(2) \\ & \Gamma_{3}(2) \\ & \Gamma_{1}(3) \end{aligned}$ | $\begin{array}{r} -291 \\ -86 \\ -28 \\ 6 \\ 80 \\ 113 \\ 182 \end{array}$ | $\begin{array}{r} -294 \\ -82 \\ -39 \\ -10 \\ 68 \\ 128 \\ 187 \end{array}$ | $\begin{array}{r} -292 \\ -84 \\ -23 \\ 3 \\ 77 \\ 111 \\ 179 \end{array}$ |
| ${ }^{7} \mathrm{~F}_{5}$ | 3948 | 3846 | 3922 | $\begin{aligned} & \Gamma_{2}(1) \\ & \Gamma_{3}(1) \\ & \Gamma_{1}(1) \\ & \Gamma_{3}(2) \\ & \Gamma_{1}(2) \\ & \Gamma_{1}(3) \\ & \Gamma_{3}(3) \\ & \Gamma_{2}(2) \end{aligned}$ | $\begin{array}{r} -162 \\ -149 \\ -104 \\ 52 \\ 60 \\ - \\ 104 \end{array}$ | $\begin{array}{r} -167 \\ -140 \\ -104 \\ 13 \\ 66 \\ 73 \\ 118 \\ 145 \end{array}$ | $\begin{array}{r} -162 \\ -150 \\ -102 \\ 47 \\ 60 \\ 63 \\ 110 \\ 125 \end{array}$ |
| ${ }^{5} \mathrm{D}_{0}$ | 17271 | 17234 | 17229 | $\Gamma_{1}$ | 0 | 0 | 0 |

assignments of all Stark levels of $\mathrm{Eu}^{3+}$ in $\mathrm{LiYF}_{4}$ which have been established in this work.

## 4. Theory and calculations

The $4 f$ electrons which are responsible for the chemical and spectroscopic properties of the lanthanides [7] are substantially screened by the $5 s^{2}$ and $5 p^{6}$ electrons and hence are weakly perturbed by the ligands in molecular and solid complexes. In fact, the spinorbit and residual Coulomb interactions for trivalent lanthanides are usually much larger than the ion-ligand interaction. These circumstances allow the crystal field to be treated as a perturbation over the free-ion interactions. In this conventional two-stage approach for the interpretation of the rare-earth spectra in a crystalline environment, the first stage is to solve the free-ion Hamiltonian in order to obtain the free-ion energy levels and wavefunctions. The matrix elements for the residual Coulomb and spin-orbit

Table 2. continued

| Multiplet | $\mathrm{CG}\left(\mathrm{cm}^{-1}\right)$ |  |  | Symmetry | Stark level ( $\mathrm{cm}^{-1}$ ) |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Observed | Calculated ${ }^{\text {a }}$ | Calculated ${ }^{\text {b }}$ |  | Observed | Calculated ${ }^{\text {c }}$ | Calculated ${ }^{\text {d }}$ |
| ${ }^{5} \mathrm{D}_{1}$ | 19028 | 19002 | 19043 | $\Gamma_{3}$ | -7 | -12 | -12 |
|  |  |  |  | $\Gamma_{1}$ | 15 | 23 | 24 |
| ${ }^{5} \mathrm{D}_{2}$ | 21502 | 21446 | 21535 | $\Gamma_{2}(1)$ | -52 | -29 | -28 |
|  |  |  |  | $\Gamma_{1}$ | -23 | -9 | -10 |
|  |  |  |  | $\Gamma_{3}$ | 18 | 11 | 13 |
|  |  |  |  | $\Gamma_{2}(2)$ | 41 | 17 | 14 |
| ${ }^{5} L_{6}{ }^{\text {e }}$ | - | 25280 | 25157 | $\Gamma_{2}(1)$ | - | -221 | -205 |
|  |  |  |  | $\Gamma_{3}(1)$ | 24953 | -206 | -189 |
|  |  |  |  | $\Gamma_{1}(1)$ | - | -194 | -176 |
|  |  |  |  | $\Gamma_{2}(2)$ | 25027 | -121 | -106 |
|  |  |  |  | $\Gamma_{2}(3)$ | - | -115 | -102 |
|  |  |  |  | $\Gamma_{3}(2)$ | 25241 | 66 | 61 |
|  |  |  |  | $\Gamma_{1}(2)$ | - | 111 | 97 |
|  |  |  |  | $\Gamma_{3}(3)$ | 25415 | 204 | 186 |
|  |  |  |  | $\Gamma_{2}(4)$ | 25418 | 206 | 195 |
|  |  |  |  | $\Gamma_{1}(3)$ | - | 210 | 183 |
| RMS deviations |  | 55 | 24 |  |  | 13 | 20 |

${ }^{\text {a }}$ Calculated using the following parameters from [3]:

$$
\begin{array}{lll}
E^{1}=5544 \mathrm{~cm}^{-1} & E^{2}=24.83 \mathrm{~cm}^{-1} & E^{3}=585 \mathrm{~cm}^{-1} \\
\alpha=20 \mathrm{~cm}^{-1} & \beta=-640 \mathrm{~cm}^{-1} & \gamma=1750 \mathrm{~cm}^{-1} .
\end{array}
$$

${ }^{\mathrm{b}}$ Calculated using our values as follows:
$E^{1}=5549.2 \mathrm{~cm}^{-1} \quad E^{2}=24.8 \mathrm{~cm}^{-1} \quad E^{3}=585.2 \mathrm{~cm}^{-1} \quad \zeta=1307 \mathrm{~cm}^{-1}$
$\alpha=17.1 \mathrm{~cm}^{-1} \quad \beta=-639.4 \mathrm{~cm}^{-1} \quad \gamma=1749.8 \mathrm{~cm}^{-1}$.
${ }^{c}$ Calculated using the parameters in set A of table 3 .
${ }^{d}$ Calculated using parameters in set $B$ of table 3 .
${ }^{\text {e }}$ This multiplet was not included in the least-squares analysis. The observed positions of levels rather than splittings are given for this multiplet.
interactions can be written as [7]

$$
\begin{equation*}
\left\langle f^{N} \tau S L\right| H_{\mathrm{Coul}}\left|f^{N} \tau^{\prime} S^{\prime} L^{\prime}\right\rangle=\sum_{k=0}^{3} e_{k} E^{k} \tag{1}
\end{equation*}
$$

$\left\langle f^{N} \tau S L J\right| H_{\mathrm{s}-\mathrm{o}}\left|f^{N} \tau^{\prime} S^{\prime} L^{\prime} J\right\rangle$

$$
=\zeta_{4 \mathrm{f}}(-1)^{J+L+S^{\prime}}\left\{\begin{array}{lll}
L & L^{\prime} & l  \tag{2}\\
S^{\prime} & S & J
\end{array}\right\} \sqrt{84}\left\langle f^{N} \tau S L\left\|\mathrm{~V}^{(11)}\right\| f^{N} \tau^{\prime} S^{\prime} L^{\prime}\right\rangle
$$

Here $e_{k}$ are the angular parts of the matrix elements and $E^{k}$ and $\zeta_{4 \mathrm{f}}$ are to be treated as adjustable parameters. The term in the braces is the six- $J$ symbol and $\left\langle\left\|V^{(11)}\right\|\right\rangle$ are the reduced matrix elements of the unit tensor operator $V^{(11)}$. The treatment in which only the ground-state configuration ( $4 \mathrm{f}^{\mathrm{N}}$ ) is considered usually leads to substantial discrepancies between the calculated and the experimentally estimated positions of the free-ion energy levels. The dominant part of the configuration interaction via the

Coulomb field can be included by adding the following terms to the diagonal matrix elements of the free-ion matrices:

$$
\begin{equation*}
\delta\left(\psi, \psi^{\prime}\right)\left[\alpha L(L+1)+\beta G\left(G_{2}\right)+\gamma G\left(R_{7}\right)\right] \tag{3}
\end{equation*}
$$

Here, $G\left(G_{2}\right)$ and $G\left(R_{7}\right)$ are the eigenvalues of the Casimir operators for the groups $G_{2}$ and $R_{7}$ used to classify the states of the $4 \mathrm{f}^{N}$ configuration; $\alpha, \beta$ and $\gamma$ are the radial parameters to be adjusted. The configuration interaction via the spin-orbit interaction simply screens the spin-orbit coupling radial integrals and is automatically taken care of by parametrisation of the spin-orbit interaction. We could not consider the remaining interactions such as spin-other-orbit, owing to insufficient experimental data.

The combined energy matrices for the Coulomb, the spin-orbit and the configuration interactions were constructed for each $J$-value of the $4 f^{6}$ configuration of Eu ${ }^{3+}$. Since we have no experimental data for the multiplets with $J$ greater than 6 , our calculations are restricted to $J=0-6$ only. The sizes of the free-ion energy matrices were large, requiring a huge amount of data to be fed into the computer to build up these matrices. We checked the correctness of our programming procedure and matrices by comparing some of our results with those applicable to $\mathrm{Eu}^{3+}$ in aqueous solutions [8]. There was almost complete agreement in general. However, a few discrepancies exist. Our calculated positions of the ${ }^{5} \mathrm{D}_{4},{ }^{5} \mathrm{~F}_{4}$ and ${ }^{5} \mathrm{I}_{4}$ levels are $27672 \mathrm{~cm}^{-1}, 33672 \mathrm{~cm}^{-1}$ and $33893 \mathrm{~cm}^{-1}$, respectively, against the calculated values of $27670 \mathrm{~cm}^{-1}, 33651 \mathrm{~cm}^{-1}$ and $33914 \mathrm{~cm}^{-1}$ in reference [8]. We checked our programs and energy matrices several times but could not find any reason for this discrepancy.

The experimental estimates of the free-ion levels were obtained from the centres of gravity (CGs) of the observed positions of the Stark components of a given multiplet. Only those multiplets (except ${ }^{7} F_{5}$ ) for which all the components could be identified were considered for the theoretical analysis. The positions of the ${ }^{7} \mathrm{~F}_{J}(J=0-4)$ and ${ }^{5} \mathrm{D}_{J}(J=$ $0-2$ ) multiplets are well established from our experimental results. The calculated positions of the missing $\Gamma_{1}(3)$ and $\Gamma_{2}(2)$ Stark levels of the ${ }^{7} F_{5}$ multiplet were used to estimate its CG. The large size of the free-ion matrices for $\mathrm{Eu}^{3+}$ makes any minimisation exercise impractical (and expensive) and we had to resort to an approximate procedure to reduce the discrepancies between the experimentally estimated and the calculated energies of the free-ion levels. We started with the free-ion parameters of [3]. The starting parameters gave an RMS deviation of nearly $55 \mathrm{~cm}^{-1}$. The free-ion parameters were changed one at a time in small steps and the rms deviation was calculated in each step. Thus for each parameter the minimum rms deviation and the corresponding value of the parameter were obtained. Using this procedure we could reduce the RMS deviation to $24 \mathrm{~cm}^{-1}$. Somewhat different procedures were also adopted but the rms deviation changed only slightly. These parameters were then used to obtain the zero-order wavefunctions to carry out the crystal-field calculations.

## 5. Crystal-field calculations

The crystal-field Hamiltonian [7] can be expanded in terms of the spherical tensor operators $C_{q}^{(k)}$ :

$$
\begin{equation*}
V=\sum_{k, q, i} B_{q}^{k}\left(C_{q}^{(k)}\right)_{i} . \tag{4}
\end{equation*}
$$

Here summation involving $i$ is over all the electrons of the ion of interest. The matrix elements of the odd crystal-field terms (i.e. $k$ odd) between states of the same configuration vanish because these states have the same parity. However, the odd terms are responsible for the forced ED transitions between the states of the $4 f^{N}$ configuration by mixing into it the states of configurations of opposite parity [9]. The term with $k=q=$ 0 shifts the configuration as a whole and does not contribute to the splittings within a configuration and hence can be neglected in the first approximation. Thus the crystalfield Hamiltonian for the $\mathrm{Eu}^{3+}$ ion in $\mathrm{S}_{4}$ point symmetry can be written as

$$
\begin{equation*}
V=\sum_{k=2,4,6} B_{0}^{k}\left(C_{0}^{(k)}\right)+\sum_{k=4,6}\left[B_{4}^{k}\left(C_{4}^{(k)}+C_{-4}^{(k)}\right)+\mathrm{i} B_{4}^{\prime k}\left(C_{4}^{(k)}-C_{-4}^{(k)}\right)\right] . \tag{5}
\end{equation*}
$$

In this notation all the seven parameters are real. Of these seven parameters, the axial parameters with $q=0$ are independent of the choice of $x$ and $y$ axes of the coordinate system, while the remaining four parameters $(q \neq 0)$ depend on the choice of the coordinate system. The choice of the $z$ axis is dictated by the crystal symmetry axis ( $c$ axis); no unique choice exists for the $x$ and $y$ axes. A proper choice of the rotation angle $\phi$ about the $z$ axis which leaves the axial parameters unchanged [10] can be used to make one of the remaining parameters zero, so that we need to determine only six parameters. In the calculations presented here, we have arbitrarily set $B_{4}^{\prime 4}$ to zero. Of the two degenerate irreducible representations $\Gamma_{3}$ and $\Gamma_{4}$, only one needs to be considered as far as the crystal-field calculations are concerned. The $J z$ bases for the representations $\Gamma_{1}, \Gamma_{2}$ and $\Gamma_{3}$ are $(0, \pm 4),( \pm 2, \pm 6)$ and $(1,-3,5)$, respectively.

The experimental values of the crystal-field splittings were obtained by taking the differences of the Stark components of a given multiplet with respect to its lowest Stark component. In this manner, a total of 23 such energy differences (excluding reference levels) were obtained, 19 belonging to the ${ }^{7} \mathrm{~F}_{J}(J=0-5)$ multiplets and four to the ${ }^{5} \mathrm{D}_{J}$ ( $J=0-2$ ) multiplets. We did not include the ${ }^{5} \mathrm{~L}_{6}$ multiplet for the optimisation of parameters because of lack of sufficient experimental data on this multiplet.

The crystal-field energy matrices for the three representations $\Gamma_{1}, \Gamma_{2}$ and $\Gamma_{3}$ were constructed for each multiplet neglecting matrix elements between the different $J$ multiplets. The starting parameters, taken from [3], gave an RMS deviation of $23 \mathrm{~cm}^{-1}$ and $25 \mathrm{~cm}^{-1}$, respectively, for the 19 and 23 energy differences mentioned above. A leastsquares analysis reduced the RMS deviations to $17.5 \mathrm{~cm}^{-1}$ and $20 \mathrm{~cm}^{-1}$, respectively. A repetition of these calculations using a totally random set of starting parameters did not modify the rms deviation and the values of the axial parameters. However, some of the non-axial parameters changed their sign. It was felt that the relatively large RMS deviations obtained in these calculations are due to neglect of $J-J$ mixing effects. We therefore have attempted a limited $J-J$ mixing calculation.

A detailed consideration of the $J-J$ mixing effects in $\mathrm{LiYF}_{4}: \mathrm{Eu}^{3+}$ requires solving large energy matrices (up to $761 \times 761$ ). This is a rather difficult task. The crystal-field energy matrices for the lower ${ }^{7} \mathrm{~F}_{J}(J=0-6)$ multiplets and upper ${ }^{5} \mathrm{D}_{J}(J=0-3),{ }^{5} \mathrm{G}_{4},{ }^{5} \mathrm{G}_{5}$ and ${ }^{5} \mathrm{~L}_{6}$ multiplets were constructed separately. We had to solve four complex matrices of size $12 \times 12$ and two of size $13 \times 13$. To facilitate comparison of the calculated and observed crystal-field splittings, free-ion eigenvalues were appropriately added to the diagonal matrix elements. The least-squares analysis was carried out by taking the lowest Stark component of each multiplet as reference. The starting parameters taken from [3] gave the RMS deviations of nearly $5 \mathrm{~cm}^{-1}$ for 19 energy differences corresponding to ${ }^{7} \mathrm{~F}_{J}$ ( $J=0-5$ ) multiplets and nearly $14 \mathrm{~cm}^{-1}$ for 23 energy differences when ${ }^{5} \mathrm{D}_{J}(J=0-2)$ multiplets were also included. The six-parameter least-squares fit could bring these

Table 3. Crystal-field parameters. Sets A and B correspond to the best-fit parameters with and without $J-J$ mixing for 23 energy differences.

|  | Set A | Set B |
| :--- | :---: | :---: |
| $B_{0}^{2}\left(\mathrm{~cm}^{-1}\right)$ | $360.5( \pm 0.2)$ | $370.5( \pm 2.2)$ |
| $B_{0}^{4}\left(\mathrm{~cm}^{-1}\right)$ | $-723.2( \pm 0.5)$ | $-821.3( \pm 3.8)$ |
| $B_{0}^{6}\left(\mathrm{~cm}^{-1}\right)$ | $-42.62( \pm 0.4)$ | $-81.45( \pm 3.8)$ |
| $B_{4}^{4}\left(\mathrm{~cm}^{-1}\right)$ | $-929.7( \pm 0.1)$ | $-1001.0( \pm 2.9)$ |
| $B_{4}^{6}\left(\mathrm{~cm}^{-1}\right)$ | $-808.8( \pm 0.1)$ | $-816.0( \pm 2.6)$ |
| $\mathrm{i} B_{4}^{\prime 4}\left(\mathrm{~cm}^{-1}\right)$ | 0 | 0 |
| $\mathrm{i} B_{4}^{\prime 6}\left(\mathrm{~cm}^{-1}\right)$ | $238.4( \pm 0.5)$ | $272.5( \pm 8.4)$ |
| $\mathrm{RMS} \mathrm{deviation}\left(\mathrm{cm}^{-1}\right)$ | 13.1 | 20.1 |

RMS deviations to $2.9 \mathrm{~cm}^{-1}$ and $13.1 \mathrm{~cm}^{-1}$. Table 2 shows experimental and calculated splittings and table 3 gives the corresponding crystal-field parameters.

We notice a considerably improved agreement for the low-lying ${ }^{7} F_{j}$ multiplets, thus establishing the fact that the $J-J$ mixing effects are quite important for these closely spaced multiplets. The agreement for higher multiplets $\left({ }^{5} \mathrm{D}_{J}\right)$ is, however, poor even when $J-J$ mixing effects are included. A similar discrepancy has been reported under a somewhat different truncation procedure [11]. The mixing of ${ }^{3} \mathrm{P}$ states, which was neglected in [11], was suggested as a possible cause for this disagreement. However, our calculations rule out this possibility as we have used intermediate wavefunctions, which take account of these effects to a certain extent. Taking the ${ }^{2} \mathrm{H}_{11 / 2}$ multiplet of $\mathrm{Nd}^{3+}$ as an example, Faucher et al [12] have recently demonstrated the inadequacy of the conventional crystal-field theory for coupled states (i.e. states having the same $S$-, $L$ and $J$-values). The ${ }^{5} \mathrm{D}_{J}$ multiplets involve coupled states. We have no satisfactory explanation for the poor agreement for the ${ }^{5} \mathrm{D}_{J}$ multiplets. We, nevertheless, feel that more exact $J-J$ mixing calculations covering larger experimental data should be attempted.

## 6. Summary and conclusions

We have recorded absorption and laser-induced fluorescence spectra of $\mathrm{LiYF}_{4}: \mathrm{Eu}^{3+}$ in $\sigma, \pi$ and axial modes of polarisation at liquid-nitrogen temperature. Some of the spectral lines show a pure MD character, while some others have a pure ED character. There are still others which show a mixed character. It is interesting to point out that some of the MD transitions ( ${ }^{5} \mathrm{D}_{0}{ }^{-7} \mathrm{~F}_{1}$ for example) are among the strongest observed lines for this system. Detailed analysis based on the observed polarisation and other aspects of spectral lines confirms that the relevant $E u^{3+}$ site symmetry is $\mathrm{S}_{4}$. We have identified the complete Stark structure of the ${ }^{5} \mathrm{D}_{2}$ multiplet and the partial structure of the ${ }^{5} \mathrm{~L}_{6}$ multiplet for the first time. In addition, complete assignment of the Stark structure of ${ }^{7} \mathrm{~F}_{J}(J=0-$ 4), ${ }^{5} \mathrm{D}_{0}$ and ${ }^{5} \mathrm{D}_{1}$ multiplets has been made. The ${ }^{7} \mathrm{~F}_{5}$ multiplet has been partially identified. Our experimentally inferred positions of the Stark levels belonging to the ${ }^{7} \mathrm{~F}_{J}(J=0-4)$ and ${ }^{5} \mathrm{D}_{0,1}$ multiplets are by and large in agreement (within $\pm 3 \mathrm{~cm}^{-1}$ ) with those reported by Görller-Walrand et al. However, some discrepancy exists for the structure of the ${ }^{7} \mathrm{~F}_{5}$ multiplet. For example, our analysis of the experimental data would place the $\Gamma_{2}(1)$ and
$\Gamma_{3}(1)$ levels of the ${ }^{7} \mathrm{~F}_{5}$ multiplet at $3786 \mathrm{~cm}^{-1}$ and $3799 \mathrm{~cm}^{-1}$, respectively, compared with $3795 \mathrm{~cm}^{-1}$ and $3807 \mathrm{~cm}^{-1}$ reported by Görller-Walrand et al. The ${ }^{7} \mathrm{~F}_{4}\left(\Gamma_{1}(3)\right),{ }^{7} \mathrm{~F}_{5}\left(\Gamma_{1}(1)\right)$ and ${ }^{7} F_{5}\left(\Gamma_{1}(2)\right)$ Stark levels which could not be established by Görller-Walrand et al have been identified in this work. At the same time we have failed to observe the ${ }^{7} F_{5}\left(\Gamma_{2}(2)\right)$ level at $4070 \mathrm{~cm}^{-1}$. The structure of the ${ }^{7} \mathrm{~F}_{6}$ multiplet could not be established as, although we observed the ${ }^{5} \mathrm{D}_{2}-{ }^{-7} \mathrm{~F}_{6}$ fluorescence, it was rather weak. It would be necessary to use a sample with a higher $\mathrm{Eu}^{3+}$ concentration to establish the structure of this multiplet. A theoretical interpretation of the spectroscopic data in terms of a Hamiltonian consisting of the free-ion and crystal-field interactions has been attempted. Rigorous calculations for $\mathrm{Eu}^{3+}$ with six electrons in the 4 f shell are difficult to make. A proper least-squares analysis of the free-ion energy levels was not possible. An approximate procedure gave an RMS deviation of $24 \mathrm{~cm}^{-1}$ for the nine multiplets investigated in the present work. Our crystal-field calculations show that $J-J$ mixing effects are quite important for this ion. A calculation of crystal-field splittings including limited $J-J$ mixing effects gave an RMS deviation of $13 \mathrm{~cm}^{-1}$ for 32 Stark levels belonging to the ${ }^{7} \mathrm{~F}$ and ${ }^{5} \mathrm{D}$ multiplets. Under these conditions the RMS deviation for the ${ }^{7} F_{0-5}$ multiplets is about $3 \mathrm{~cm}^{-1}$.

## References

[1] Bihari B 1988 PhD Thesis Indian Institute of Technology, Kanpur
[2] Sharma K K and Erickson L E 1985 J. Phys. C: Solid State Phys. 182935
[3] Görller-Wairand C, Behets M, Porcher P, Moune-Minn D K and Laursen I 1985 Inorg. Chim. Acta 109 83
[4] Thoma R E, Weaver C F, Friedman H A, Insley H, Harris L A and Yakel H A 1961 J. Chem. Phys. 65 1096
[5] Koster G F, Dimmock J O, Wheeler R G and Statz H 1963 Properties of the Thirty-two Point Groups (Cambridge, MA: MIT)
[6] Morrison C A and Leavitt R P 1982 Handbook on the Physics and Chemistry of Rare Earths vol 5, ed K A Gschneidner and L Eyring (Amsterdam: North-Holland) pp 461-692
[7] Wybourne B G 1965 Spectroscopic Properties of Rare Earths (New York: Wiley)
[8] Carnall W T, Fields P R and Rajnak K 1968 J. Chem. Phys. 494450
[9] Judd B R 1962 Phys. Rev. 127750
[10] Rudowicz C 1985 Chem. Phys. 9743
[11] Hölsa J and Porcher P 1981 J. Chem. Phys. 752108
[12] Faucher M, Garcia D, Caro P, Derouet J and Porcher P 1989 J. Physique 50219

